
XV JORNADAS DE PARALELISMO—ALMERIA, SEPTIEMBRE 2004 1

Scalability and Complexity of 2-Dimensional
SIMD Extensions

Mauricio Alvarez, Friman Sánchez, Esther Salamı́, Alex Ramirez and Mateo Valero

Abstract—Current SIMD extensions have probed to

be effective for incrementing the performance of gen-

eral purpose and embedded microprocessors for mul-

timedia applications, but they seem to be not capable

of scale their performance as required by new multi-

media standards and applications. In this paper we

describe and evaluate the scaling of a SIMD exten-

sion based on matrix registers and present a perfor-

mance comparison with the scaling of SIMD exten-

sions used in current microprocessors. This matrix

architecture adapts well to the data structures used

in image, video and audio applications and can be in-

corporated without bigger modifications into a high

performance superscalar processor. Evaluations have

demonstrated a significant performance improvement

over conventional SIMD extensions. Speed-up over a

2-way superscalar processors with MMX-like exten-

sion goes up to 3.3X for complete applications. The

reduced instruction count, that reduces the pressure

in the front end, and the distributed nature of the

register file make the matrix extension a complexity-

effective solution suitable for the next generation of

high performance processors.

Key words— Computer architecture, SIMD, multi-

media extensions, vector processors.

I. Introduction

MULTIMEDIA applications have become one of
the most important workloads in contempo-

rary computing [1]. In general purpose processor the
common approach for dealing with the requirements
of multimedia applications has been the extension of
the Instruction Set Architecture with SIMD instruc-
tions that exploit data level parallelism (DLP) by
performing multiple sub-word operations in a single
register [2].

As multimedia standards become more complex,
processors need to scale their SIMD multimedia ex-
tensions in order to support new computing demand-
ing features. One way of scaling is making registers
wider [3] in order to pack more data into a single
register. In this way is possible to process more op-
erations within a single instruction but it is not clear
that future microprocessors may scale the SIMD ex-
tensions from current 128-bit registers to 256-bit or
more, mainly because the significant overhead that
would be needed for packing and unpacking data [4].
Another way of scaling is to add more SIMD func-
tional units to the corresponding pipeline, but some
studies [5] have demonstrated that SIMD execution

Computer Architecture Department. Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain. {fsanchez,
alvarez, esalami, aramirez, mateo}@ac.upc.es. This work has
been supported by the Ministry of Science and Technology of
Spain, the European Union (FEDER funds) under contract
TIC2001-0995-C02-01 and by an IBM Faculty Award to
prof. Mateo Valero. We acknowledge the European Center
for Parallelism of Barcelona (CEPBA) for supplying the
computing resources for our research.

units are underutilized because of bottlenecks that
appear in the non-SIMD portion of the pipeline.

On the other hand, some research proposals sug-
gest the use of vector processors [6], [7] as an effective
way of exploiting DLP present in multimedia appli-
cations. An alternative approach comes from the
combination of vector registers and sub-word com-
putation in such a way that registers can be seen as
matrices [8].

In this paper a Matrix Oriented Multimedia Ar-
chitecture (MOM) with augmented registers is pre-
sented as an effective way of processor scaling for
multimedia applications. We show that making these
matrix registers bigger, it is possible to pack almost
all the data available in the inner loops of common
multimedia kernels. By the use of matrix registers,
the dynamic instruction count is reduced drastically
while still allowing the execution of more operations
in parallel. The final results show a significant in-
crement of performance in the evaluated multimedia
applications. Further extensions in width or length
of SIMD registers would not result in significant per-
formance improvements.

This paper is organized as follows: In chapter 2
the differences between scaling one-dimensional and
two-dimensional extensions are presented and a com-
parison of complexity issues of both schemes is also
detailed. In chapter 3 the applications, simulator and
modeled microarchitectures used in the experiments
are described. In chapter 4 performance results for
both kernels and complete applications are analyzed.
Finally in chapter 5 some conclusions are presented.

II. SIMD and Matrix Extensions for
Multimedia

A. Scaling 1-Dimensional SIMD Extensions

As it was mentioned, there are two main ways
for scaling current multimedia extensions. The first
approach is scaling the resources of a superscalar
processor. Such an approach has two main disad-
vantages: First, there is the growing complexity of
critical structures in the pipeline that can make un-
feasible a high aggressive superscalar processor with
many SIMD functional units; and, second, even if
such a processor could be developed, performance
gains could not be as good as expected. Recent
studies [5] suggest that there are some bottlenecks
in the microarchitecture that do not allow to obtain
better performance by resources scaling. These bot-
tlenecks are related with overhead and supporting
instructions necessary for address arithmetic, data
transformation, access overhead and branches.

Increasing the width of SIMD registers, from cur-



2 MAURICIO ALVAREZ Y COL: A COMPLEXITY EFFECTIVE SCALING OF 2-DIMENSIONAL SIMD EXTENSIONS

rent 128-bit registers to 256-bit, 512-bit or more, is
the other way of scaling. The idea is to pack more
data into a single register and then to perform more
operations in parallel. But the majority of image,
video an audio applications use data in small arrays
or matrices sometimes non-contiguous in memory.
For this kind of applications, making registers bigger
than the basic data structures may incur a big over-
head for taking data from memory and/or storing
back the results. Additionally the amount of data
that can be packed is always fixed by the register
width and changes to it implies a big source code
modification.

B. Scaling the Matrix Extension

MOM is a matrix-oriented ISA paradigm for mul-
timedia applications, based on fusing conventional
vector ISAs with SIMD ISAs such as MMX. MOM
is a suitable alternative for the multimedia domain
due to its efficiently handling of the small matrix
structures typically found in most multimedia ker-
nels [8].

The register file organization proposed in the orig-
inal MOM architecture [9] provides the programmer
with 16 matrix registers, each one holding 16 64-bit
words. In this work we study how vector register file
in MOM architecture can scale from 64-bit (referred
as VMMX64) to 128-bit (referred as VMMX128) reg-
isters. Additionally we compare the matrix extension
scaling with the benefits and limitations of scaling a
MMX-like extension with 64-bit registers (MMX64)
to a 128-bit extension like Intel SSE2 (MMX128).

Figure 1 shows four different areas that represent
the storage capacity of the studied approaches. Area
(1) represents the original 64-bit register in MMX
alternative and area (2) shows how MMX64 scales
to MMX128.

Fig. 1. Register capacity

Area (3) shows the capacity of a vector register
in VMMX64. VMMX64 overcomes the limitation of
MMX64, and even MMX128, allowing a maximum
vector length of 16, which it is enough for common
multimedia algorithms. Finally, Area 4 shows, the
way in which VMMX64 scales to VMMX128 allowing
to pack up to 16x16 bytes in a single register. This is

particularly useful for image and video applications.
When scaling the VMMX version from 64-bit to

128-bit registers a modification in the ISA was nec-
essary in order to improve the support for the 64-bit
data type. Instructions like partial load or store were
added. These instructions are important for applica-
tions that can not take advantage of the full 128-bit
registers due to their limited data parallelism.

C. Complexity issues when scaling multimedia regis-

ter files

In order to reduce the complexity of the register
file in VMMX configurations, functional units can
be replicated and each matrix register can be split-
ted across lanes [10]. Figure 2 shows an implementa-
tion of this approach. As an example, in the 4-way
MMX configuration, a centralized register file con-
nected to 4 arithmetic units needs 12 read ports and
8 write ports. This centralized register file that in-
terconnects every arithmetic unit is costly because
it provides both storage for and communication be-
tween arithmetic units in such a way that any ALU
can read from or write to any storage location.

Fig. 2. Register File Comparison.

On the other hand, 4-way VMMX configuration
has 2 functional units, each one with 4 lanes, as fig-
ure 2 shows. For room reasons, we only show one
of the functional units. The register file is divided
into 4 banks across lanes, each bank has 3 read ports
and 2 write ports. Although this organization is lim-
ited in connectivity, it is less complex than central-
ized organization. In this case, the restricted com-
munication can be made in a way that matches the
parallelism and access patterns of multimedia appli-
cations. The distributed register file organization is
a more cost-effective alternative than the centralized
approach [11], in terms of area, time, and power.

III. Experimental Methodology

A. Workload

In order to evaluate the different architectures un-
der study we have selected six applications from
the Mediabench suite [12] that are representative of



XV JORNADAS DE PARALELISMO—ALMERIA, SEPTIEMBRE 2004 3

video, still image and voice processing applications.
For each application we have selected the most com-
putational intensive kernels with potential DLP and
evaluated them in isolation. Tables I and II describe
the kernels and benchmarks and their characteristics.

TABLA I

Kernel set description

Kernel Description, (used in)

idct Discrete Cosine Transform (mpeg2enc,jpegenc)
motion1 Motion estimation (SAD) (mpeg2enc)
motion2 Motion estimation (SQD)) (mpeg2enc)
comp Motion compensation (mpeg2dec)
addblock Picture decoding (mpeg2dec)
rgb RGB to YCC color conversion (jpegdec)
ycc YCC to RGB color conversion (jpegenc)
h2v2 Image up-sampling (jpegdec)
ltppar Parameter calculation for LTP filtering (gsmenc)
ltpfilt Long term parameter filtering (gsmdec)

TABLA II

Benchmark set description

Application Description Input data set

jpegenc JPEG still image encoder penguin.ppm
jpegdec JPEG still image decoder penguin.jpg
mpeg2enc MPEG2 video encoder mei16v2rec
mpeg2dec MPEG2 video decoder mei16v2rec.mpg
gsmenc GSM 06.10 speech encoder clinton.pcm
gsmdec GSM 06.10 speech decoder clinton.gsm

B. Simulation Framework

Emulation libraries containing the multimedia
instructions have been used for the four exten-
sions evaluated: MMX64, MMX128, VMMX64 and
VMMX128. Most of the functionality of MMX and
SSE ISAs have been implemented into the MMX64
and MMX128 emulation libraries respectively, but is
important to note that the MMX libraries do no ex-
actly model the MMX or SSE instruction set. Using
these emulation libraries, optimized versions of the
mentioned kernels were developed. For maximizing
performance, common optimization techniques like
loop-unrolling and software pipelining were applied.
In all cases, the baseline ISA is the Alpha ISA. In
order to generate code for it, gcc version 2.95.2 was
used. All codes have been compiled using the -O flag.

The simulation tool used in this work was an im-
proved version of Jinks Simulator [13], that is a
parametrizable simulator targeted at evaluating su-
perscalar architectures with a special focus on vector
extensions. An execution-driven approach based on
ATOM [14] was used for generating the input trace
stream for the simulator.

C. Processor Models

The baseline processor is a 2-way out-of-order su-
perscalar core similar to MIPS R10000 [15] with the
addition of a MMX64 SIMD extension. We have
evaluated four different configurations that include
MMX and VMMX approaches for 64 and 128-bit reg-
isters.

• 2/4/8-way superscalar processor + MMX64
• 2/4/8-way superscalar processor + MMX128

• 2/4/8-way superscalar processor + VMMX64
• 2/4/8-way superscalar processor + VMMX128

Table III shows the processor configurations used
for simulations. Although the 8-way superscalar pro-
cessor with SIMD units is a very aggressive config-
uration that is nowadays unfeasible in a high per-
formance general purpose processor at current clock
frequencies, it can be used as a guide of the potential
performance that could be obtained scaling processor
resources.

TABLA III

Modeled processors

Parameter MMX VMMX
2/4/8 way 2/4/8 way

Fetch, Decode, Grad. 2/4/8 2/4/8
Integer FUs 2/4/8 2/4/8
FP FUs 1/2/4 1/2/4
SIMD issue 2/4/8 1/2/3
SIMD FUs 2/4/8 1/2/3
Mem FUs (64b ports) 1/2/4 1/1/2
L2 ports 64b/128b/256b 64b/128b/256b

Logical Media registers 32 16x16
Physical Media registers 40/64/96 20/36/64
(MMX or VMMX)
Lanes 1 4
Banks per Lane 1 1/2/4
Read ports per Bank 6/12/24 3
Write ports per Bank 4/8/18 2

A detailed memory hierarchy model with two lev-
els of on-chip cache and a Direct RAMBUS main
memory system have been included in the simula-
tor. Table IV shows the configuration parameters
for caches and main memory. For VMMX versions
a vector cache was used [16]. The vector cache is
a two-bank interleaved cache targeted at accessing
stride-one vector requests by loading two whole cache
lines (one per bank) instead of individually loading
the vector elements. Then, an interchange switch,
a shifter, and a mask logic correctly align the data.
Scalar accesses are made to the L1 conventional data
cache, while vector accesses bypass the L1 to access
directly the L2 vector cache. If the L2 port is B× 64-
bit wide, these accesses are performed at a maximum
rate of B elements per cycle when the stride is one,
and at 1 element per cycle for any other stride. A
coherency protocol based on an exclusive-bit policy
plus inclusion is used to guarantee coherency.

TABLA IV

Memory hierarchy configuration (WT=write-though,

WB=write-back, NWA=no-write-allocate, WB

depth/retire = write buffer entries/retire

L1 L2

size 32KB 512KB
number of ports 1/2/4 1
port width (bytes) 8 16/32/64
number of banks 8 2
sets per bank 32 2048
associativity 4 2
line size (bytes) 32 128
write policy WT WB
allocate policy NWA NWA
latency 3 12
MSHR entries 8 8
WB depth/retire 8/4 8/4

Main Memory Latency (cycles) 500



4 MAURICIO ALVAREZ Y COL: A COMPLEXITY EFFECTIVE SCALING OF 2-DIMENSIONAL SIMD EXTENSIONS

IV. Simulation results

A. Kernel speed-up analysis

Figure 3 shows the kernels speed-up for the differ-
ent multimedia ISAs under study. The baseline is a
2-way superscalar processor with a MMX64 exten-
sion.

idct

m
otion1

m
otion2

com
p

addblock

rgb

ycc

h2v2

ltpar

ltpfilt

1

2

3

4
mmx64

mmx128

vmmx64

vmmx128

Fig. 3. Kernels speed-up (2-way)

Scaling from MMX64 to MMX128 does not result
in great performance improvements taken into ac-
count that registers and functional units are twice
the size of the MMX64 ones. The speed-up only
goes up to 1.47X for idct, 1.43X for ycc, 1.25X for
addblock and 1.19X for h2v2. These kernels have
the most regular data patterns and they adapt well
to 128-bit wide registers. The average speed-up for
MMX128 kernels is 1.24X.

Results also show that both VMMX versions ex-
hibit bigger speed-ups than the MMX ones in all the
cases and produce significant speed-ups when going
from VMMX64 to VMMX128 versions, except for
ltppar and addblock kernels. The bigger speed-ups
of kernels (4.10X for idct, 2.71X for ycc, 2.68X for
h2v2, 2.43X for motion2 and 2.29X for motion1 ) are
due to the matching between the data organization
of these kernels with the matrix registers structure.
This include: higher vector length (motion1 and mo-

tion2 ) that allows a full utilization of vector registers,
a stride of one that allows to find consecutive data
in memory (h2v2 ) and the use of vector registers as
a cache for intermediate results (idct).

The small speed-up obtained by comp and ad-

dblock in both MMX128 and VMMX128 versions is
related with the small parallel data available (8x4
pixels in comp with a stride of 800) that only repre-
sents a small fraction of the matrix registers.

B. Complete applications speed-up

Speed-up of kernels only shows the potential of
the evaluated architectures on a highly data parallel
code, but these kernels are used in bigger applica-
tions where there is a lot of scalar code that can
not use the SIMD units. Then the multimedia ex-
tensions proposed not only need to exploit efficiently
the data parallelism available but not to degrade the
performance of the scalar portion of the application.

Mpeg2enc is the application which takes more ben-
efit from the use of matrix registers. Figure 4 shows
that VMMX versions of the application scales much
better than MMX ones. VMMX128 version has the

biggest speed-up due to the good matching of data
in the motion and idct kernels to the 128-bit matrix
registers. These kernels account for more than 80
percent of the total execution time of the whole appli-
cation. Mpeg2dec instead shows a significant speed-
up but the difference between MMX and VMMX
versions are smaller than in mpeg2enc. In this ap-
plication motion compensation routines are not so
much significant of the total execution time and their
data parallelism is not so big. Furthermore mpeg2dec

presents a lot of scalar code in picture decoding that
can not be vectorized.

In jpegdec application, VMMX versions show a
greater capacity to exploit DLP compared with
MMX versions. This is due to the fact that h2v2 and
ycc kernels operate over data that has a good pat-
tern in memory and the vector length used is high (8
and 16 in both cases). On the other hand, VMMX64
version of jpegenc obtains a better performance than
MMX64 and MMX128 for less aggressive schemes,
that is 2 and 4-way. However, in 8-way configura-
tion, MMX128 version outperforms the VMMX64
version, this is due to the behavior of rgb kernel. The
vectorization happens along the color space (Red,
Green and blue) dimension, yield a vector length of
only 3. Additionally, the order in which results must
be stored in memory does not benefit the VMMX64
version. However, the VMMX128 version overcomes
this limitation allowing to pack of more sub-word
data into the matrix register.

In gsmenc and gsmdec applications, DLP is small
due to the dominance of the scalar code as explained
in the kernels section.

As showed in figure 4, for mpeg2enc, a simi-
lar performance can be obtained by using a 2-way
VMMX128 processor instead of a 8-way MMX128
one. The same behavior can be seen in jpegenc and
mpeg2dec between 4-way VMMX versions and 8-way
MMX ones. In those cases, scaling the register file of
the 2-dimensional architecture is much more effective
than scaling the complete resources of a processor
with 1-dimensional registers. As can be derived the
complexity of a 2way superscalar processor with a
2-dimensional extension is smaller that a 8-way pro-
cessors with a MMX-like extension.

C. Cycle Breakdown

Figure 5 shows the dynamic cycle distribution for
the jpegdec application. The remaining of the bench-
marks are not included for room reasons, but they
exhibit a similar behavior. The shadow part of each
column represents the dynamic cycles used in vec-
tor operations, while the white part comes from the
scalar code. Results are normalized by the dynamic
cycle count of the reference 2-way MMX64 super-
scalar processor.

As it was expected, scaling the MMX64 extension
provides a significant drop in the number of cycles to
execute the vector part of code. Scaling in both di-
mensions (width and length) achieves the maximum
reduction: for the 2-way architecture, the VMMX128



XV JORNADAS DE PARALELISMO—ALMERIA, SEPTIEMBRE 2004 5

2-way 4-way 8-way
1

2

3

jpegenc

2-way 4-way 8-way
1

2

3

jpegdec

2-way 4-way 8-way
1

2

3

mpeg2enc

2-way 4-way 8-way
1

2

3

mpeg2dec

2-way 4-way 8-way
1

2

3

gsmenc

2-way 4-way 8-way
1

2

3

gsmdec

mmx64

mmx128

vmmx64

vmmx128

2-way 4-way 8-way
1

2

3

average

Fig. 4. Full applications speed-up

m
m

x64
m

m
x128

vm
m

x64
vm

m
x128

m
m

x64
m

m
x128

vm
m

x64
vm

m
x128

m
m

x64
m

m
x128

vm
m

x64
vm

m
x128

0

20

40

60

80

100

vector cycles

scalar cycles

2-way 4-way 8-way

Fig. 5. Cycle count distribution (jpegdec)

extension reduces the execution time of the vector
code in a 85% over the MMX64 extension.

However, it can be observed that, when most of
the available DLP parallelism is exploited via mul-
timedia extensions, the remaining scalar part of the
code becomes the main bottleneck. For the 8-way
VMMX128 architecture, the vector cycles only rep-
resent the 2.7% of the overall execution time. By the
Amhdal Law, further improvements in the execution
of the vector region would be imperceptible in the
full application.

D. Dynamic Instruction Count

Figure 6 shows the dynamic instruction count
for the benchmarks under study. Again, results
are normalized by the dynamic instruction count
of the MMX64 architecture. The operations have
been classified into five categories: scalar memory,
scalar arithmetic, control, vector memory and vec-
tor arithmetic. We observe that the VMMX archi-
tectures execute about 30% fewer instructions than
the MMX64, and the MMX128 an average of 15%
fewer instructions. This is obviously due to the ca-
pability of these extensions to pack more operations
into a single instruction.

As seen in figure 6, the biggest instruction reduc-
tion is achieved by the mpeg2enc application. This
reductions comes from the commented elimination
of scalar instructions used for address computation
and loop manipulation. In any way, note that the
limit of packing data seems to be reached, and scal-
ing further over, either in width or in length, would

m
m

x64
m

m
x128

vm
m

x64
vm

m
x128

m
m

x64
m

m
x128

vm
m

x64
vm

m
x128

m
m

x64
m

m
x128

vm
m

x64
vm

m
x128

m
m

x64
m

m
x128

vm
m

x64
vm

m
x128

m
m

x64
m

m
x128

vm
m

x64
vm

m
x128

m
m

x64
m

m
x128

vm
m

x64
vm

m
x128

0

20

40

60

80

100

varith
vmem
sctrl
sarith
smem

jpegenc jpegdec mpeg2enc mpeg2dec gsmenc gsmdec

Fig. 6. Dynamic instruction count

not provide any noticeable benefit. At this point, a
full reorganization of the code is required if we want
to expose more parallelism to the processor.

V. Conclusions

In this paper we have presented an scalability
analysis of SIMD extensions for multimedia appli-
cations. Scaling current 1-dimensional SIMD exten-
sions was compared to scaling a 2-dimensional ar-
chitecture. The comparison was made using both
kernels and complete multimedia applications. Scal-
ing was made in the width of SIMD registers and
in processor resources. The matrix architecture with
128-bit registers has shown the best performance im-
provements compared to a 64-bit matrix architecture
and one-dimensional(64-bit and 128-bit) SIMD ex-
tensions. The benefits of a Matrix architecture come
from the elimination of some of the bottlenecks of
current SIMD extensions. Multimedia data struc-
tures fit very well into matrix registers, the matrix
nature of the ISA eliminates a lot of pointer and
loop code overhead and the combination of vector
length and vector stride eliminate the constraints in
the contiguous data distribution in memory. In some
cases additional performance improvements can be
obtained by the use of matrix registers as a cache for
intermediate results reducing also the pressure on the
memory hierarchy.

By applying all of these optimizations, the Matrix
architecture is reaching the limits of available DLP in
the inner loops of common multimedia applications.
Further scaling on the width or length of matrix reg-
isters can no deliver significant performance improve-



6 MAURICIO ALVAREZ Y COL: A COMPLEXITY EFFECTIVE SCALING OF 2-DIMENSIONAL SIMD EXTENSIONS

ments because the execution time is now dominated
by the scalar portion of the code. Extracting more
parallelism in the analyzed applications requires spe-
cial code transformations in order to execute multi-
ple instances of the optimized functions in parallel
or dedicated hardware to extract parallelism beyond
the inner loops.

References

[1] K. Diefendorff and P.K. Dubey, “How multimedia work-
loads will change processor design,” IEEE Micro, vol.
30, no. 9, pp. 43–45, September 1997.

[2] N. T. Slingerland and A. J. Smith, “Multimedia instruc-
tion sets for general pupose microprocessors: A survey,”
Tech. Rep. CSD-00-1124, UCB, December 1999.

[3] S. K. Raman, V. Pentkovski, and J. Keshav, “Imple-
menting streaming simd extensions on the pentium iii
processor,” IEEE Micro, vol. 20, no. 4, pp. 47–57, Au-
gust 2000.

[4] S. Larsen and S. Amarasinghe, “Exploiting superword
level parallelism with multimedia instruction sets,” in
Proceedings of the SIGPLAN ’00 Conference on Pro-
gramming Language Design and Implementation, June
2000.

[5] Deepu Talla, Lizy Kurian John, and Doug Burger, “Bot-
tlenecks in multimedia processing with simd style exten-
sions and architectural enhancements,” IEEE Transac-
tions on Computers, vol. 52, no. 8, pp. 1015–1031, Au-
gust 2003.

[6] K. Asanovic, J. Beck, B. Irissou, B. Kingsbury, N. Mor-
gan, and J. Wawrzynek, “The t0 vector microprocessor,”
in Hot Chips VII, August 1995, pp. 187–196.

[7] C.E Kozyrakis and D.A. Patterson, “Scalable vector pro-
cessors for embedded systems,” IEEE Micro, vol. 23, no.
6, pp. 36–45, Nov–Dec 2003.

[8] Jesus Corbal, Roger Espasa, and Mateo Valero, “Ex-
ploiting a new level of dlp in multimedia applications,”
in 32nd international symposium on Microarchitecture,
1999, pp. 72–79.

[9] Jess Corbal, N-Dimensional Vector Instruction Set
Architectures for Multimedia Applications, PhD the-
sis, UPC, Departament d’Arquitectura de Computadors,
2002.

[10] Krste Asanovic, Vector Microprocessors, PhD thesis,
University of California at Berkeley, 1998.

[11] Scott Rixner, William J. Dally, Brucek Khailany, Peter
Mattson, Ujval J. Kapasi, , and John D. Owens, “Reg-
ister organization for media processing,” in Tenth In-
ternational Symposium on High Performance Computer
Architecture, January 2000.

[12] Chunho Lee, Miodrag Potkonjak, and William H.
Mangione-Smith, “Mediabench: A tool for evaluating
and synthesizing multimedia and communicatons sys-
tems,” in 30th International Symposium on Microar-
chitecture, 1997, pp. 330–335.

[13] Roger Espasa, “Jinks: A parametrizable simulator for
vector architectures,” Technical Report UPC-CEPBA-
1995-31, Universitat Politécnica de Catalunya, 1995.

[14] Amitabh Srivastava and Alan Eustace, “ATOM: A sys-
tem for building customized program analysis tools,”
ACM SIGPLAN ’94 Conference on Programming Lan-
guage Design and Implementation, vol. 29, no. 6, pp.
196–205, June 1994.

[15] K. C. Yeager, “The mips r10000 superscalar micropro-
cessor,” IEEE Micro, vol. 16, no. 2, April 1996.

[16] Francisca Quintana, Jesus Corbal, Roger Espasa, and
Mateo Valero, “Adding a vector unit on a superscalar
processor,” in International Conference on Supercom-
puting, June 1999, pp. 1–10.


