
HARDWARE SOFTWARE CO-DESIGN OF FUZZY SYSTEMS

M. Alvarez Mesa, F. A. Rivera Vélez and J. E. Aedo Cobo
malvarez@udea.edu.co, rivera@microe.udea.edu.co, joseaedo@udea.edu.co

Grupo de Microelectrónica. Universidad de Antioquia. Colombia

ABSTRACT

Hardware/software co-design is a modern technique for
designing complex electronic systems constituted by
hardware and software. This article shows a co-design
methodology application in fuzzy systems
implementation. It starts with a fuzzy system formal
description and different hardware/software
implementation alternatives are analyzed according to
their cost and performance.

1. INTRODUCTION

In last years, fuzzy systems (FSs) have turned into an
useful tool to treat and to model complex and non linear
systems. Specially in areas like control, image
processing, robotics and consumer electronics, FSs have
been incorporated in a great number of products and
processes [1] [2]. Due to these reasons, there is a great
interest in FSs integration in embedded electronics,
designed for specific applications in the mentioned areas.

There are several approaches that can be employed to
implement a FS. One of them consists in designing an
application specific integrated circuit (ASIC) that
executes the FS. This implementation can be made using
analog, digital or mixed design techniques [3] [4] [5].
Another approach consist in a software description using
a high level language like C or C++. Software execution
requires the use of a processor, that can be a general
purpose processor or an application specific processor
(ASIP) with a fuzzy dedicated instruction set [6] [7].

The previous alternatives differ mainly in obtained
performance. An aspect that significantly influences
performance is related to the way FS characteristic
parameters are defined and stored, as well as operators
used in fuzzification, inference, rule aggregation and
defuzzification processes [3] [7].

For cost sensitive applications that require high
performance, an interesting implementation approach
consists in using low cost processors together with
ASICs, designed to perform the most demanding parts

from a computational view of the FS. This approach is
related to a methodology called co-design. An inherent
obstacle to this methodology is the selection of a proper
hardware/software partition and the availability of tools
for system co-simulation and validation. CAD software
development to apply this methodology has been object of
an intense research in last years [8]. An example of these
development tools is Polis system [9]. It includes some
tools dedicated to co-design. In this research, co-design
methodology is used based on Polis for FSs
implementation. For this purpose, two FSs was modeled
(one of two inputs and one output, and another one of
three inputs and one output) and different
hardware/software partition alternatives were analyzed.
This article has been structured in the following way: in
section 2, a description of co-design methodology is done;
in section 3, a description of FSs are developed, and their
modeling using Esterel language and co-simulation and
co-synthesis process are described. In section 4, an
analysis of obtained results is presented. Finally, in
section 5, conclusions and future researches are
presented.

2. HARDWARE/SOFTWARE CO-DESIGN

Most current digital electronic systems are constituted by
hardware and software components. Software
components consist of programs developed in a high level
language running on a programmable processor.
Hardware components consist of ASICs.
Hardware/software combination tries to satisfy design
specifications related with performance, cost and
development time [10]. Traditional implementation of
this kind of systems is based on the development of
software and hardware components in a separate way.
This approach restricts the possibility of developing a
wide exploration of design space for each application.
Also, it makes difficult hardware and software
interconnection design, and it allows a mistake possibility
in components final integration process; increasing
development cost and time [11].

These difficulties have stimulated new CAD tools
development for designing such systems. Using these

tools it is possible to develop concurrent specification,
simulation and synthesis of hardware and software
components.

Figure 1. Polis co-design flow

The aim of these new methodologies is to satisfy design
specifications at system level, exploiting the existing
synergy between hardware and software through its
concurrent design [10]. Models and co-design tools differ
in the level where re-programming is done.

When it is made in processor application level, co-
design consists on software and hardware unified
treatment and automatic synthesis, assuming hardware as
a co-processor [12].

Within embedded systems field there are a great
interest in control oriented systems or reactive systems,
that are characterized by receiving events from
environment as inputs, and respond generating output
events continuously [13]. Design of this kind of systems
has real time, cost, performance and power consumption
constraints, that can be approached in a consistent way
using CAD for co-design. In this article, Polis system
was used, whose design cycle is shown in Figure 1. The
main steps of this methodology are described next [14].

2.1 Formal specification

Design starts with a system specification in a high-level
language. Esterel is the specification language
recommended for Polis, a synchronous language for
reactive systems with a model of computation based on
concurrence with perfect synchrony, in which concurrent
processes can execute tasks and interchange information
in zero time, at least in a conceptual level [15]. This

language allows to specify functionality, independently of
hardware/software implementation.

Figure 2. FS internal structure.

2.2 Co-simulation

Polis offers an environment to evaluate alternatives of
design through simulation. Models, implemented in
hardware or software, are simulated using Ptolemy,
which is a simulation and design environment for
heterogeneous systems. In Ptolemy, objects are described
in different levels of abstraction (domains) using different
models of computation. Primitives of each domain,
called "stars", can be used in a simulation or synthesis
way. The function of each one is described in Esterel.
For reactive systems, the most appropriate domain is DE
(Discret Event) domain that uses a model of computation
events driven [8]. Co-simulation can be made at two
levels of abstraction: (1) at a functional level, where time
is ignored and it is only important system correct
operation; and (2) at an approximate time level, in which
execution time is considered through a calculation of
execution cycles for hardware and software, according to
a master clock.

2.3 Design Partition

In co-simulation process, one can choose in a dynamical
way the implementation type of each component and
other parameters like processor, clock rate and scheduling
algorithm, for satisfying system design constraints. A
key aspect of Polis methodology is the possibility of
exploring interactively a great variety of partition
alternatives, estimating the cost and performance of each
one.

2.4 Co-synthesis

Co-synthesis refers to the integrated synthesis of
hardware and software partitions. A co-design finite state
machine (CFSM) is associated with each module
described in Esterel [16]. CFSMs are locally synchronous
and interaction among them is globally asynchronous.
Each CFSM can be synthesized in hardware or software.
For software synthesis, Polis translate each CFSM into a

technology independent high level intermediate
representation, well-known as S-GRAPH; then S-GRAPH
is translated into standard C code, that can be executed
on a processor after compilation.

Polis synthesizes a small operating system, assigning
input and output ports for communication between
hardware and software, and making tasks scheduling
with

an algorithm selected during partition. Synthesis
includes code generation in C with scheduler and I/O
drivers. Together with synthesis process, POLIS
generates for hardware a synchronous digital circuits
logical description with BLIF format, which can be used
for FPGA programming or VHDL code generation.
With synthesis results, it is possible to build a system
prototype interconnecting a processor and a programmed
FPGA.

3. FUZZY SYSTEMS IMPLEMENTATION USING

CO-DESIGN

3.1. Internal structure of the used FSs

Essentially, a FS is constituted by three components: a
fuzzificator, a inference machine and a defuzzificator
[17]. Figure 2 shows a disposition of these three
components. Fuzzification develops a transformation of
categorical (real) numbers in fuzzy sets. Inference
machine, does the inference process based on a fuzzy rule
set, and on an input fuzzy sets generated in fuzzification
process. The result of inference is a fuzzy set defined in
output space. Finally, defuzzification process generates
an output categorical number from the fuzzy set given by
inference machine. From the input/output point of view,
a FS can be assumed as a transformation (generally not
lineal) among input and output real numbers. The typical
form of a rule set is the following one:

R1: IF X1 IS I1

1 AND X2 IS I1
2 AND... XM IS I1

M
THEN Y IS C1
R2: IF X1 IS I2

1 AND X2 IS I2
2 AND ... XM IS I2

M
THEN Y IS C2
...
RN: IF X1 IS IN

1 AND X2 IS IN
2 AND ... XM IS IN

M
THEN Y IS CN

Equation 3.1. Fuzzy rule set.
This rule set defines FS dynamics. In

m represents the
terms defined in input m and in rule n, while Cn
represents the terms defined in output of rule n. xm
represents the linguistic variables associated to input n.
Rule set illustrated in Equation (3.1) defines a FS of m
inputs and one output [18]. Inference machine evaluates
the rule set based on fuzzified specific values presented in
FS inputs. Basically, the rule set defines a fuzzy
relationship between input and output spaces [7].

Figure 3 shows the steps followed in FS execution.
In this figure, fuzzification process is initially carried out,
according to that, it is established the input singleton
membership degree related to each term (fuzzy set In

k)
defined for that input. Assuming an overlap degree equal
to two among membership functions, the maximum
number of terms presenting a bigger intersection than
zero with a singleton is two. Each fuzzy set group is
described with two points and two slopes. Membership
value is determined according to the interval where
singleton is positioned. This calculation is illustrated in
Figure 4.

Once determined this intersection value, rules
activation degree is calculated. For this, it is verified if
active terms are defined in rules antecedents. If that is
right, rule activation value is calculated through the
minimum value determination among two intersection

values found in the corresponding terms. This procedure
is applied to all the rules.

Finally, the contribution of each rule is added to
generate the inferred fuzzy set by the whole set of rules.
Inferred set is defuzzified for calculating a categorical
output. For the FSs implemented in this work, a
singleton in output (Si) is associated to each rule. In this
way, output
value is calculated using the gravity center-based
defuzzification method, pondered by activation degree
(Wi), like it is show in Equation (3.2).

Figure 4. Membership calculation for an input singleton.

??
?

n

i i

ii

W
SWy

1

Equation 3.2. Defuzzification method.

3.2. Esterel modeling

In the realization of this work, two FSs benchmark were
used, whose characteristics are shown in Table 1. These
FSs were used to validate the implementation
methodology.

Model Inputs /
Terms

Outputs /
Terms

Rules

FS1 2 / 3-3 1 / 5 7
FS2 3 / 4-3-6 1 / 5 80

Table 1. FS Benchmarks

In Figure 5, FS1 model is shown inside Ptolemy
environment . For modeling these FSs in Esterel, the
fuzzification stage was divided in two modules by each

input. The first of them (fuzz_control1) examines all
defined terms for the corresponding input, and gives to
second module (fuzz_calc1) the parameters that describe
membership functions (slopes and points). With these
data and the sampled input value, the second module
defines if intersection exists and its degree. Each
fuzzification unit offers information about active terms
(maximum 2) and its membership (activation) value.

For rules processing, two modules were created: one
of them is called “Rules” and carries out a searching in
all defined rules, it establishes if active terms coincide
with rule antecedents. If that is true, it calculates the
activation degree through minimum operator. This
activation degree is multiplied by the output singleton
value defined for each

Figure 5. FS1 in Ptolemy.

rule, and then its value is accumulated. Likewise,
activation degree is accumulated with each rule
contribution. These accumulated values correspond to
(3.2) equation numerator and denominator. The other
module (divisor) was defined to carry out division among
accumulated values.

It has been created a control module (secuenciador)
for keeping whole system synchronization, generating the
appropriate sequence of events for system operation.

This same procedure was carried out for FS2. It
should be noticed that is possible to reuse fuzzification
modules previously modeled in Esterel.

3.3. Co-simulation using Ptolemy

Initially, a hardware implementation of the whole FS was
made for a functional co-simulation and to verify the
description made in Esterel. Figure 6 shows the obtained
control surface using the Matlab fuzzy logic toolbox, that
serves as a reference to compare the results obtained in
FS1 co-simulation, illustrated in Figure 7.

After FSs functional verification, it was carried out a
time simulation to estimate software cost, using an

approximate processor model (in this case the
MC68HC11E9). The aim of this simulation is to analyze
if real time restrictions are satisfied.

As starting point, it is useful to evaluate the whole
system implementation completely in software, then one
decides if it is necessary to increase the performance of
one or several modules, implementing them in hardware.

3.4. Design Partition

POLIS offers tools for analyzing the software components
performance in terms of its activation times and response
ability to high rate of input events. This analysis shows
that membership calculation modules in fuzzification
stage, rule processing module, and output categorical
value calculation module in defuzzification stage, have
the

Figure 6. FS1 Control surface obtained with Matlab fuzzy

logic toolbox.

biggest computational complexity. When time
restrictions don't achieve to be satisfied, these modules
are chosen for being implemented in hardware. An
additional restriction is that rule processing module
cannot be implemented in hardware because it contains C
language procedures for rules parameters loading.

According to previous analysis, we decide to
implement fuzzification (fuzz_calc) and defuzzification
(divisor) modules in hardware. The other modules are
implemented in software, and they will be executed on
the MC68HC11E9 8 bits microcontroller with an 8 Mhz
clock frequency. Round Robin [19] is chosen as a
scheduling algorithm for the real time operating system,
which carries out a tasks sequential execution without
taking into account priorities.

3.5. Co-synthesis

In the software synthesis process, specific code
optimizations for reactive systems are carried out. In this

level, a software computational cost estimate is made,
represented by maximum and minimum execution times
and code size. Estimates for FS1 and FS2 are shown in
Tables 2 and 3, with all modules implemented in
software.

MODULE MINIMUM
TIME

(CYCLES)

MAXIMUM
TIME

(CYCLES)

SIZE
(BYTES)

FUZZ_CONTROL1 343 1043 1617
FUZZ_CONTROL2 343 1043 1609

FUZZ_CALC 0/1 546 1556 294
DIVISOR 134 424 183

SECUENRULES 104 146 97
RULES 423 1403 3196

SECUENCIADOR 129 322 618
TOTAL 1749 5159 7467

Table 2: FS1 software implementation cost.

Figure 7. FS1 Control surface obtained via functional co-
simulation.

When fuzzification (fuzz_calc) and defuzzification
(divisor) modules are implemented in hardware, software
execution time and code size are reduced like it is shown
in Table 4.

MODULE MINIMUM
TIME

(CYCLES)

MAXIMUM
TIME

(CYCLES)

SIZE
(BYTES)

FUZZ_CONTROL_0 343 1043 1617
FUZZ_CONTROL2_0 343 1043 1609
FUZZ_CONTROL3_0 343 1043 1609

FUZZ_CALC 0/1/2 819 2334 3441
SECUENRULES 104 146 97

SECUENCIADOR 154 146 97
RULES 503 1720 10144

DIVISOR 134 424 183
TOTAL 2197 6343 16503

Tabla 3. FS2 software implementation cost.

During the RTOS synthesis, communication between
hardware and software tasks is made by interrupts.
Interrupt service routines (ISRs) are also automatically
generated. RTOS synthesis assigns microcontroller ports
for hardware/software interface too. 53 and 69 bits are
exchanged between hardware and software in FS1 and
FS2, respectively.

IMPLEMENTATION MINIMUM

TIME
(CYCLES)

MAXIMUM
TIME

(CYCLES)

SIZE
(BYTES)

SOFTWARE:
FS1:
FS2:

1749
2197

5159
6697

7467
17348

PARTITION:
FS1:
FS2:

1337
1790

3947
5495

6957
16018

Tabla 4. Implementation cost: software v.s. partition.

Modules synthesized in hardware are represented in BLIF
format. Table 5 shows hardware cost and a reduction
through logical simplification. Results of hardware
synthesis are expressed in number of input ports (pi),
number of output ports (po), nodes, latches and number of
literals in sum of products form (lits). These parameters
are used in a rapid prototyping environment to decide
what type and number of FPGAs are required to
implement the selected partition.

 PI PO NODES LATCHES LITS
NOT OPTIMIZED

FS1
FS2

34
32

13
15

5184

14582

164
378

38137

105476
OPTIMIZED

FS1
FS2

34
32

13
15

4370
6565

164
246

261163
39570

Table 5: FSs hardware cost.

4. RESULTS ANALYSIS

From a functional point of view, FSs presents results in
agreement with theoretical ones, like it is shown in
control surfaces of Figures 6 and 7. Figure 6 was
obtained with the Matlab fuzzy logic toolbox, using a
floating point data representation. Figure 7 was obtained
based upon co-simulation results, using an 8 bits integer
representation. In spite of quantization errors, this
representation facilitates efficient arithmetic operations in
8 bits microcontrollers and it reduces hardware portions
size.

From synthesis point of view, our implementation
can be evaluated through both software computational
cost and hardware size. As reference, in Table 6 synthesis

data obtained with Polis are compared with results
presented by FuzzyTech for the FS1, using the same
processor (68HC11), an 8 Mhz clock frequency and an 8
bits integer representation.

SYSTEM MINIMUM
TIME

(CYCLES)

MAXIMUM
TIME

(CYCLES)

SIZE
ROM

(KBYTES)
FUZZY-
TECH

1.1 1.3 0.64

POLIS 0.1 0.6 6.9

Table 6. FS1 Implementation performance: Fuzzytech v.s.

Polis

Selected hardware/software partition, shown in Table 4,
reflects partition effects on total execution time, where
computationally heavier modules are taken to hardware.
Execution time obtained allows to develop fuzzy
controllers for real time systems in which software
implementations are not fast enough.

5. CONCLUSIONS

Hardware/software co-design represents a new
methodological perspective in complex digital system
design. Thanks to an unified and implementation
independent representation it is possible a wide
exploration of different alternatives of hardware/software
implementations, allowing to satisfy design specifications
at a system level. In this way co-design allows to reduce
development time and to increase products quality and
reliability.

Availability of microcontrollers that contain
peripherals for control applications (timers, AD
converters, etc.) and programmable logical devices as
FPGAs makes possible a rapid prototyping of co-designed
systems. In FSs case, co-design demonstrates to be an
appropriate methodology when it is necessary to obtain
efficient implementations for embedded systems with
performance, cost and development time constraints,
where FS is just a part of total system.

The implementation carried out with Polis
demonstrated to be functionally valid and efficient in
hardware and software resources use. Nowadays we are
working in a development platform using low cost
microcontrollers and FPGAs and allowing prototypes
implementations for practical applications.

6. ACKNOWLEDGMENTS

This work has been developed with support of Comité
para el Desarrollo de la Investigación (CODI) of the
Universidad de Antioquia..

7. REFERENCES

[1] C. V. Altrock, Fuzzy Logic and neuro-fuzzy
applications explained, Prentice Hall, Englewood Cliffs,
USA, 1995.

[2] C. V. Altrock, “Fuzzy logic and neuro-fuzzy
technologies in appliances”, Embedded Systems
Conference, http://www.esc.com, USA, 1999.

[3] A. Kandel and G. Langholz, Fuzzy hardware,
architectures and applications, Kluwer Academic
Publishers, 1998.

[4] A. Costa et al., “Hardware solutions for fuzzy
control”, Proceedings of the IEEE, Vol. 83, No.3,
Mar.1995.

[5] G. Ascia, V. Catania, G. Filici, Sergio Plazzo et al,
“A VLSI fuzzy expert system for real-time traffic control
in ATM networks”, IEEE Transaction on fuzzy systems,
Vol. 5, No.1, Feb. 1997.
[6] V. Salapura and M. Gschwind. “Hardware/software
co-design of a fuzzy RISC processor”. In Design
Automation and test in Europe Conference, Paris, France,
Feb. 1998.

[7] J. E. Aedo, “Técnicas de implementación en hardware
de sistemas difusos”, Seminario internacional sobre
procesos avanzados de manufactura, Medellín, Nov.
2000.

[8] S. Edwards, L. Lavagno, E. A. Lee, A. Sangiovanni-
Vicentelli, “Design of embedded systems: formal models,
validation and synthesis”, Proceedings of the IEEE , Vol.
85, No 3, Mar. 1997.

[9]. UC Berkeley, “POLIS: A framework for
hardware/software co-design of embedded systems”,
http://www-cad.eecs.berkeley.edu/~polis.

[10]. G. De Michelli and R. K. Gupta,
“Hardware/software co-design”, Proceedings of the
IEEE, Vol. 85, No 3, Mar. 1997.

[11] S. Kumar, The codesign of embedded systems: a
unified hardware software representation, Kluwer
Academic Publishers, Norwell, USA, 1996.

[12] M. Chiodo, P. Giusto, A. Jurecska et al,
“Hardware/software codesign of embedded systems”,
IEEE Micro, Ago. 1994.

[13]. G. Berry, P. Couronne, and G. Gonthier, “The
asynchronous approach to reactive and real time
systems”, Proceedings of the IEEE , Vol. 79, Sep. 1991.

[14] F. Balarin, M. Chiodo, D. Engels et al. POLIS, a
design environment for control-dominated embedded
systems, version 0.4, User's manual, UC Berkeley, Nov.
1999.

[15] G. Berry, The foundations of ESTEREL, In G.
Plotkin et al. Ed., Proof, language and interaction:
essays in honour of Robert Milner, MIT Press, USA,
2000.

[16] M. Chiodo, P. Giusto, H. Hsieh et al. “A formal
methodology specification model for hardware software
codesign", Technical report UCB/ERL M93/48, UC
Berkeley, Jun. 1993.

[17] L. X. Wang, Adaptive Fuzzy Systems and Control,
Prentice Hall, Englewood Cliffs, USA 1994.

[18] J. M. Mendel, “Fuzzy logic systems for engineering:
a tutorial”, Proceedings of the IEEE , Vol. 83, No 3, Mar.
1995.

[19] J. Labrosse, MicroC/OS-II. The real time kernel,
R&D Books, Lawrence, USA, 1999.

