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ABSTRACT 

 
Hardware/software co-design is a modern technique for 
designing complex electronic systems constituted by 
hardware and software.  This article shows a co-design 
methodology application in fuzzy systems 
implementation.  It starts with a fuzzy system formal 
description and different hardware/software 
implementation alternatives are analyzed according to 
their cost and performance. 

 

1. INTRODUCTION 
 
In last years, fuzzy systems (FSs) have turned into an 
useful tool to treat and to model complex and non linear 
systems.  Specially in areas like control, image 
processing, robotics and consumer electronics, FSs have 
been incorporated in a great number of products and 
processes [1] [2].  Due to these reasons, there is a great 
interest in FSs integration in embedded electronics, 
designed for specific applications in the mentioned areas. 

There are several approaches that can be employed to 
implement a FS. One of them consists in designing an 
application specific integrated circuit (ASIC) that 
executes the FS.  This implementation can be made using 
analog, digital or mixed design techniques [3] [4] [5].  
Another approach consist in a software description using 
a high level language like C or C++.  Software execution 
requires the use of a processor, that can be a general 
purpose processor or an application specific processor 
(ASIP) with a fuzzy dedicated instruction set [6] [7]. 

The previous alternatives differ mainly in obtained 
performance.  An aspect that significantly influences 
performance is related to the way FS characteristic 
parameters are defined and stored, as well as operators 
used in fuzzification, inference, rule aggregation and 
defuzzification processes [3] [7]. 

For cost sensitive applications that require high 
performance, an interesting implementation approach 
consists in using low cost processors together with 
ASICs, designed to perform the most demanding parts 

from a computational view of the FS.  This approach is 
related to a methodology called co-design.  An inherent 
obstacle to this methodology is the selection of a proper 
hardware/software partition and the availability of tools 
for system co-simulation and validation.  CAD software 
development to apply this methodology has been object of 
an intense research in last years [8].  An example of these 
development tools is Polis system [9].  It includes some 
tools dedicated to co-design. In this research, co-design 
methodology is used based on Polis for FSs 
implementation.  For this purpose, two FSs was modeled 
(one of two inputs and one output, and another one of 
three inputs and one output) and different 
hardware/software partition alternatives were analyzed.  
This article has been structured in the following way: in 
section 2, a description of co-design methodology is done; 
in section 3, a description of FSs are developed, and their 
modeling using Esterel language and co-simulation and 
co-synthesis process are described.  In section 4, an 
analysis of obtained results is presented.  Finally, in 
section 5, conclusions and future researches are 
presented. 
 

2. HARDWARE/SOFTWARE CO-DESIGN 
 
Most current digital electronic systems are constituted by 
hardware and software components.  Software 
components consist of programs developed in a high level 
language running on a programmable processor.  
Hardware components consist of ASICs.  
Hardware/software combination tries to satisfy design 
specifications related with performance, cost and 
development time [10].  Traditional implementation of 
this kind of systems is based on the development of 
software and hardware components in a separate way.  
This approach restricts the possibility of developing a 
wide exploration of design space for each application.  
Also, it makes difficult hardware and software 
interconnection design, and it allows a mistake possibility 
in components final integration process; increasing 
development cost and time [11].  

These difficulties have stimulated new CAD tools 
development for designing such systems.  Using these 



tools it is possible to develop concurrent specification, 
simulation and synthesis of hardware and software 
components.   

 
Figure 1. Polis co-design flow 

 
The aim of these new methodologies is to satisfy design 
specifications at system level, exploiting the existing 
synergy between hardware and software through its 
concurrent design [10].  Models and co-design tools differ 
in the level where re-programming is done.   

When it is made in processor application level, co-
design consists on software and hardware unified 
treatment and automatic synthesis, assuming hardware as 
a co-processor [12].  

Within embedded systems field there are a great 
interest in control oriented systems or reactive systems, 
that are characterized by receiving events from 
environment as inputs, and respond generating output 
events continuously [13].  Design of this kind of systems 
has real time, cost, performance and power consumption 
constraints, that can be approached in a consistent way 
using CAD for co-design.  In this article, Polis system 
was used, whose design cycle is shown in Figure 1.  The 
main steps of this methodology are described next [14].  
 
2.1 Formal specification  
 
Design starts with a system specification in a high-level 
language.  Esterel is the specification language 
recommended for Polis, a synchronous language for 
reactive systems with a model of computation based on 
concurrence with perfect synchrony, in which concurrent 
processes can execute tasks and interchange information 
in zero time, at least in a conceptual level [15].  This 

language allows to specify functionality, independently of 
hardware/software implementation. 
 
 

 
Figure 2. FS internal structure. 

 
2.2 Co-simulation  
 
Polis offers an environment to evaluate alternatives of 
design through simulation.  Models, implemented in 
hardware or software, are simulated using Ptolemy, 
which is a simulation and design environment for 
heterogeneous systems.  In Ptolemy, objects are described 
in different levels of abstraction (domains) using different 
models of computation.  Primitives of each domain, 
called "stars", can be used in a simulation or synthesis 
way. The function of each one is described in Esterel.  
For reactive systems, the most appropriate domain is DE 
(Discret Event) domain that uses a model of computation 
events driven [8].  Co-simulation can be made at two 
levels of abstraction: (1) at a functional level, where time 
is ignored and it is only important system correct 
operation; and (2) at an approximate time level, in which 
execution time is considered through a calculation of 
execution cycles for hardware and software, according to 
a master clock. 
 
2.3 Design Partition 
 
In co-simulation process, one can choose in a dynamical 
way the implementation type of each component and 
other parameters like processor, clock rate and scheduling 
algorithm, for satisfying system design constraints.  A 
key aspect of Polis methodology is the possibility of 
exploring interactively a great variety of partition 
alternatives, estimating the cost and performance of each 
one. 
 
2.4 Co-synthesis 
 
Co-synthesis refers to the integrated synthesis of 
hardware and software partitions.  A co-design finite state 
machine (CFSM) is associated with each module 
described in Esterel [16].  CFSMs are locally synchronous 
and interaction among them is globally asynchronous.  
Each CFSM can be synthesized in hardware or software.  
For software synthesis, Polis translate each CFSM into a 



technology independent high level intermediate 
representation, well-known as S-GRAPH; then S-GRAPH 
is translated into standard C code, that can be executed 
on a processor after compilation.  

Polis synthesizes a small operating system, assigning 
input and output ports for communication between 
hardware and software, and making tasks scheduling 
with  

an algorithm selected during partition.  Synthesis 
includes code generation in C with scheduler and I/O 
drivers.  Together with synthesis process, POLIS 
generates for hardware a synchronous digital circuits 
logical description with BLIF format, which can be used 
for FPGA  programming or VHDL code generation.  
With synthesis results, it is possible to build a system 
prototype interconnecting a processor and a programmed 
FPGA. 
 
3. FUZZY SYSTEMS IMPLEMENTATION USING 

CO-DESIGN 
 
3.1. Internal structure of the used FSs  
 
Essentially, a FS is constituted by three components: a 
fuzzificator, a inference machine and a defuzzificator 
[17].  Figure 2 shows a disposition of these three 
components.  Fuzzification develops a transformation of 
categorical (real) numbers in fuzzy sets.  Inference 
machine, does the inference process based on a fuzzy rule 
set, and on an input fuzzy sets generated in fuzzification 
process.  The result of inference is a fuzzy set defined in 
output space.  Finally, defuzzification process generates 
an output categorical number from the fuzzy set given by 
inference machine.  From the input/output point of view, 
a FS can be assumed as a transformation (generally not 
lineal) among input and output real numbers.  The typical 
form of a rule set is the following one: 

 
R1: IF X1 IS I1

1 AND X2 IS I1
2 AND... XM IS I1

M  
THEN Y IS C1 
R2: IF X1 IS I2

1 AND X2 IS I2
2 AND ... XM IS I2

M  
THEN Y IS C2             
... 
RN: IF X1 IS IN

1 AND X2 IS IN
2 AND ... XM IS IN

M   
THEN Y IS CN 

 

Equation 3.1. Fuzzy rule set. 
This rule set defines FS dynamics.  In

m represents the 
terms defined in input m and in rule n, while Cn 
represents the terms defined in output of rule n.  xm 
represents the linguistic variables associated to input n. 
Rule set illustrated in Equation (3.1) defines a FS of m 
inputs and one output [18].  Inference machine evaluates 
the rule set based on fuzzified specific values presented in 
FS inputs.  Basically, the rule set defines a fuzzy 
relationship between input and output spaces [7]. 

Figure 3 shows the steps followed in FS execution.  
In this figure, fuzzification process is initially carried out, 
according to that, it is established the input singleton 
membership degree related to each term (fuzzy set In

k) 
defined for that input.  Assuming an overlap degree equal 
to two among membership functions, the maximum 
number of terms presenting a bigger intersection than 
zero with a singleton is two.  Each fuzzy set group is 
described with two points and two slopes.  Membership 
value is determined according to the interval where 
singleton is positioned.  This calculation is illustrated in 
Figure 4. 

Once determined this intersection value, rules 
activation degree is calculated.  For this, it is verified if 
active terms are defined in rules antecedents.  If that is 
right, rule activation value is calculated through the 
minimum value determination among two intersection 



values found in the corresponding terms.  This procedure 
is applied to all the rules. 

Finally, the contribution of each rule is added to 
generate the inferred fuzzy set by the whole set of rules. 
Inferred set is defuzzified for calculating a categorical 
output.  For the FSs implemented in this work, a 
singleton in output (Si) is associated to each rule. In this 
way, output  
value is calculated using the gravity center-based 
defuzzification method, pondered by activation degree 
(Wi), like it is show in Equation (3.2). 
 

 

 
Figure 4. Membership calculation for an input singleton. 
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Equation 3.2. Defuzzification method. 
 
3.2. Esterel modeling 
 
In the realization of this work, two FSs benchmark were 
used, whose characteristics are shown in Table 1.  These 
FSs were used to validate the implementation 
methodology.   
 

Model Inputs / 
Terms 

Outputs / 
Terms 

Rules 

FS1 2 / 3-3 1 / 5 7 
FS2 3 / 4-3-6 1 / 5 80 

 
Table 1. FS Benchmarks 

   
In Figure 5, FS1 model is shown inside Ptolemy 
environment .  For modeling these FSs in Esterel, the 
fuzzification stage was divided in two modules by each 

input.  The first of them (fuzz_control1) examines all 
defined terms for the corresponding input, and gives to 
second module (fuzz_calc1) the parameters that describe 
membership functions (slopes and points).  With these 
data and the sampled input value, the second module 
defines if intersection exists and its degree.  Each 
fuzzification unit offers information about active terms 
(maximum 2) and its membership (activation) value. 

For rules processing, two modules were created: one 
of them is called “Rules” and carries out a searching in 
all defined rules, it establishes if active terms coincide 
with rule antecedents.  If that is true, it calculates the 
activation degree through minimum operator.  This 
activation degree is multiplied by the output singleton 
value defined for each  

 
Figure 5. FS1 in Ptolemy. 

 
rule, and then its value is accumulated.  Likewise, 
activation degree is accumulated with each rule 
contribution.  These accumulated values correspond to 
(3.2) equation numerator and denominator.  The other 
module (divisor) was defined to carry out division among 
accumulated values.   

It has been created a control module (secuenciador) 
for keeping whole system synchronization, generating the 
appropriate sequence of events for system operation.   

This same procedure was carried out for FS2.  It 
should be noticed that is possible to reuse fuzzification 
modules previously modeled in Esterel. 

 
3.3. Co-simulation using Ptolemy  
 
Initially, a hardware implementation of the whole FS was 
made for a functional co-simulation and to verify the 
description made in Esterel.  Figure 6 shows the obtained 
control surface using the Matlab fuzzy logic toolbox, that 
serves as a reference to compare the results obtained in 
FS1 co-simulation, illustrated in Figure 7. 

After FSs functional verification, it was carried out a 
time simulation to estimate software cost, using an 



approximate processor model (in this case the 
MC68HC11E9).  The aim of this simulation is to analyze 
if real time restrictions are satisfied.  

As starting point, it is useful to evaluate the whole 
system implementation completely in software, then one 
decides if it is necessary to increase the performance of 
one or several modules, implementing them in hardware.  

 
3.4. Design Partition 

 
POLIS offers tools for analyzing the software components 
performance in terms of its activation times and response 
ability to high rate of input events.  This analysis shows 
that membership calculation modules in fuzzification 
stage, rule processing module, and output categorical 
value calculation module in defuzzification stage, have 
the  

 
Figure 6. FS1 Control surface obtained with Matlab fuzzy 

logic toolbox. 
 
biggest computational complexity.  When time 
restrictions don't achieve to be satisfied, these modules 
are chosen for being implemented in hardware. An 
additional restriction is that rule processing module 
cannot be implemented in hardware because it contains C 
language  procedures for rules parameters loading. 

According to previous analysis, we decide to 
implement fuzzification (fuzz_calc) and defuzzification 
(divisor) modules in hardware.  The other modules are 
implemented in software, and they will be executed on 
the MC68HC11E9 8 bits microcontroller with an 8 Mhz 
clock frequency.  Round Robin [19] is chosen as a 
scheduling algorithm for the real time operating system, 
which carries out a tasks sequential execution without 
taking into account priorities. 
 
3.5. Co-synthesis 
 
In the software synthesis process, specific code 
optimizations for reactive systems are carried out.  In this 

level, a software computational cost estimate is made, 
represented by maximum and minimum execution times 
and code size.  Estimates for FS1 and FS2 are shown in 
Tables 2 and 3, with all modules implemented in 
software.  
 

MODULE MINIMUM 
TIME 

(CYCLES) 

MAXIMUM 
TIME 

(CYCLES) 

SIZE 
(BYTES) 

FUZZ_CONTROL1 343 1043 1617 
FUZZ_CONTROL2 343 1043 1609 

FUZZ_CALC 0/1 546 1556 294 
DIVISOR 134 424 183 

SECUENRULES 104 146 97 
RULES 423 1403 3196 

SECUENCIADOR 129 322 618 
TOTAL 1749 5159 7467 

 
Table 2: FS1 software implementation cost. 

 

 
Figure 7. FS1 Control surface obtained via functional co-
simulation. 
 
When fuzzification (fuzz_calc) and defuzzification 
(divisor) modules are implemented in hardware, software 
execution time and code size are reduced like it is shown 
in Table 4. 
 

MODULE MINIMUM 
TIME 

(CYCLES) 

MAXIMUM 
TIME 

(CYCLES) 

SIZE 
(BYTES) 

FUZZ_CONTROL_0 343 1043 1617 
FUZZ_CONTROL2_0  343 1043 1609 
FUZZ_CONTROL3_0 343 1043 1609 

FUZZ_CALC 0/1/2 819 2334 3441 
SECUENRULES 104 146 97 

SECUENCIADOR 154 146 97 
RULES 503 1720 10144 

DIVISOR 134 424 183 
TOTAL 2197 6343 16503 

 
Tabla 3. FS2 software implementation cost.  



 
During the RTOS synthesis, communication between 
hardware and software tasks is made by interrupts.  
Interrupt service routines (ISRs) are also automatically 
generated.  RTOS synthesis assigns microcontroller ports 
for hardware/software interface too.  53 and 69 bits are 
exchanged between hardware and software in FS1 and 
FS2, respectively. 

 
IMPLEMENTATION MINIMUM 

TIME 
(CYCLES) 

MAXIMUM 
TIME 

(CYCLES) 

SIZE 
(BYTES) 

SOFTWARE:  
FS1: 
FS2: 

 
1749 
2197  

 
5159 
6697 

 
7467 
17348 

PARTITION:  
FS1: 
FS2: 

 
1337 
1790 

 
3947 
5495 

 
6957 
16018 

 
Tabla 4. Implementation cost: software v.s. partition. 

 
Modules synthesized in hardware are represented in BLIF 
format.  Table 5 shows hardware cost and a reduction 
through logical simplification.  Results of hardware 
synthesis are expressed in number of input ports (pi), 
number of output ports (po), nodes, latches and number of 
literals in sum of products form (lits).  These parameters 
are used in a rapid prototyping environment to decide 
what type and number of FPGAs are required to 
implement the selected partition. 
 

 PI PO NODES LATCHES LITS 
NOT OPTIMIZED  

FS1 
FS2 

 
34 
32 

 
13 
15 

 
5184 

14582 

 
164 
378 

 
38137 

105476 
OPTIMIZED 

FS1 
FS2 

 
34 
32 

 
13 
15 

 
4370 
6565 

 
164 
246 

 
261163 
39570 

 
Table 5: FSs hardware cost. 

 
4. RESULTS  ANALYSIS  

 
From a functional point of view, FSs presents results in 
agreement with theoretical ones, like it is shown in 
control surfaces of Figures 6 and 7.  Figure 6 was 
obtained with the Matlab fuzzy logic toolbox, using a 
floating point data representation. Figure 7 was obtained 
based upon co-simulation results, using an 8 bits integer 
representation. In spite of quantization errors, this 
representation facilitates efficient arithmetic operations in 
8 bits microcontrollers and it reduces hardware portions 
size. 

From synthesis point of view, our implementation 
can be evaluated through both software computational 
cost and hardware size. As reference, in Table 6 synthesis 

data obtained with Polis are compared with results 
presented by FuzzyTech for the FS1, using the same 
processor (68HC11), an 8 Mhz clock frequency and an 8 
bits integer representation.  
 

SYSTEM MINIMUM 
TIME 

(CYCLES) 

MAXIMUM 
TIME 

(CYCLES) 

SIZE 
ROM 

(KBYTES) 
FUZZY-
TECH 

1.1 1.3 0.64 

POLIS 0.1 0.6 6.9 

 
Table 6. FS1 Implementation performance: Fuzzytech v.s. 

Polis 
 

Selected hardware/software partition, shown in Table 4, 
reflects partition effects on total execution time, where 
computationally heavier modules are taken to hardware.  
Execution time obtained allows to develop fuzzy 
controllers for real time systems in which software 
implementations are not fast enough. 

5. CONCLUSIONS  
 
Hardware/software co-design represents a new 
methodological perspective in complex digital system 
design.  Thanks to an unified and implementation 
independent representation it is possible a wide 
exploration of different alternatives of hardware/software 
implementations, allowing to satisfy design specifications 
at a system level. In this way co-design allows to reduce 
development time and to increase products quality and 
reliability.  

Availability of microcontrollers that contain 
peripherals for control applications (timers, AD 
converters, etc.) and programmable logical devices as 
FPGAs makes possible a rapid prototyping of co-designed 
systems. In FSs case, co-design demonstrates to be an 
appropriate methodology when it is necessary to obtain 
efficient implementations for embedded systems with 
performance, cost and development time constraints, 
where FS is just a part of total system.  

The implementation carried out with Polis 
demonstrated to be functionally valid and efficient in 
hardware and software resources use. Nowadays we are 
working in a development platform using low cost 
microcontrollers and FPGAs and allowing prototypes 
implementations for practical applications.  
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